Общие сведения о приборах учета тепловой энергии и теплоносителя

Для приборов учета тепловой энергии и теплоносителя принято краткое название – теплосчетчики.

Теплосчетчик (ТС) состоит из двух основных функционально самостоятельных частей: тепловычислителя (ТВ) и датчиков (расхода, температуры и давления теплоносителя).

Тепловычислитель – это специализированное микропроцессорное устройство, предназначенное для обработки сигналов (аналоговых, импульсных или цифровых - в зависимости от типа применяемого датчика) от датчиков, преобразования их в цифровую форму, вычисления количества тепловой энергии в соответствии с принятым алгоритмом (определяемым схемой теплоснабжения), индикации и хранения (архивации) в энергонезависимой памяти прибора параметров теплопотребления.

Датчики расхода – наиболее важный элемент ТС в смысле влияния на его технические и потребительские характеристики. Не будет преувеличением сказать, что именно датчик расхода определяет качество ТС.

Для определенности поясним термин “датчик расхода”.

В качестве датчика расхода могут применяться: функционально завершенное самостоятельное устройство (расходомер, расходомер-счетчик или счетчик), для которого принято обобщенное название - преобразователь расхода (ПР), либо первичный преобразователь расхода (ППР), способный функционировать только совместно с ТВ конкретного типа.

В первом случае датчик расхода формирует унифицированный выходной сигнал (импульсный, токовый), который может обрабатываться различными ТВ, чьи входы согласованы с выходными сигналами датчика расхода. Такой комплектацией теплосчетчика в определенной степени обеспечивается унификация приборов учета тепла.

Преобразователь расхода состоит из первичного и вторичного преобразователей расхода. Вторичный преобразователь расхода (ВПР) – это электронный блок, который может быть конструктивно объединен с ППР, а может иметь раздельное исполнение. В некоторых случаях ВПР является функциональной частью ТВ, причем ВПР и ТВ монтируются в одном корпусе и иногда на одной плате.

Существуют различные способы измерения расхода теплоносителя (теплофикационной воды), например: электромагнитный, ультразвуковой, вихревой и прочие. По способу измерения расхода, реализованному в теплосчетчике, принято кратко называть теплосчетчик электромагнитным, ультразвуковым, вихревым и т.д.

В подавляющем большинстве теплосчетчиков выполняется измерение объемного расхода теплоносителя и последующее вычисление массового расхода на основе данных о температуре и плотности (температура измеряется, плотность вычисляется).

Датчики температуры не имеют сколько-нибудь существенных особенностей, нуждающихся в специальном обсуждении. Обычно в качестве датчиков температуры в составе теплосчетчика применяют подобранные (по метрологическим характеристикам) пары термосопротивлений, которые подключаются к ТВ по двух-, трех- или четырехпроводной схеме. ТВ выполняет измерение величины активного сопротивления термосопротивления, компенсацию погрешностей, вносимых линиями связи, и вычисление температуры теплоносителя.

Датчики давления (ДД) также в незначительной степени влияют на технические и потребительские свойства теплосчетчика (тем более, что для большинства практически важных случаев применения ТС использование ДД необязательно; обязательной является регистрация давления только на источниках тепловой энергии и у потребителей с открытой системой теплопотребления). Обычно ДД имеют унифицированный токовый выход 4..20, 0..20 или 0..5мА, а ТВ – сопрягаемый с ним вход.

Зачастую в ТВ не предусмотрена возможность подключения ДД. Если такая возможность существует, следует иметь в виду, что для питания ДД может потребоваться дополнительный источник напряжения (если он не встроен в ТВ).

Температура и давление теплоносителя являются исходными параметрами для определения удельной энтальпии теплоносителя.

В последнее время все чаще ощущается потребность в регистрации фактического давления в системе с целью контроля параметров теплопотребления и разрешения споров с теплоснабжающей организацией.

Номенклатура теплосчетчиков, допущенных к применению в коммерческих узлах учета тепловой энергии, очень широка (сотни наименований приборов отечественного и импортного производства). Выбор примеров, помещенных в данной статье, обусловлен результатами предварительного анализа, а также накопленным практическим опытом авторов. В любом случае, авторы не претендуют на окончательность и бесспорность высказанных суждений.

 

 

Датчики расхода теплоносителя

 

Рассмотрим кратко основные способы измерения расхода теплоносителя (теплофикационной воды) и их особенности.

Наибольшее распространение получили следующие способы измерения переменного расхода: переменного перепада давления на сужающих устройствах; ультразвуковые; электромагнитные; вихревые; тахометрические.

До настоящего времени на источниках теплоты (ТЭЦ, РТС и т.д.) традиционно в основном применяются расходомеры переменного перепада давления на сужающих устройствах (диафрагмах, соплах, трубах Вентури). Эти расходомеры обладают рядом достоинств, основными из которых являются: высокая надежность измерений и низкая зависимость качества измерений от физико-химических свойств измеряемой жидкости. Однако эти приборы имеют и недостатки, например, такие как: узкий динамический диапазон, нелинейность характеристик, высокое гидравлическое сопротивление, оказываемое потоку жидкости первичным преобразователем, необходимость демонтажа для ежегодной поверки, сложность эксплуатации, сложный монтаж, требуемые длинные прямые участки (трубопровода до и после места установки ППР). Эти недостатки затрудняют применение данных приборов, и становятся очевидными в сравнении с преимуществами, создаваемыми применением современных приборов других типов.

 

 

Ультразвуковые расходомеры.

 

Для выполнения измерений расхода на трубопроводах большого диаметра, по-видимому, наиболее перспективными являются ультразвуковые расходомеры. На многих источниках тепловой энергии расходомеры данного типа постепенно вытесняют традиционные расходомеры переменного перепада давления.

Ультразвуковые расходомеры достаточно широко применяются и в теплосчетчиках, устанавливаемых у потребителей тепловой энергии (на трубопроводах небольшого диаметра).

Ультразвуковые датчики расхода обладают следующими преимуществами: не создают гидравлического сопротивления потоку среды, обеспечивают сравнительно широкий динамический диапазон и высокую линейность измерений, имеют высокую точность и надежность, могут поверяться беспроливными (имитационными) методами без демонтажа с трубопровода.

Для ультразвуковых расходомеров характерны требуемые длинные прямые участки, необходимость выполнения высокоточных линейных измерений при монтаже, чувствительность к “завоздушиванию” среды, чувствительность к состоянию внутренней поверхности трубопровода (если применяются накладные датчики расхода).

Появление многолучевых ультразвуковых расходомеров позволило сократить длины прямых участков в несколько раз, применение измерительных участков, изготовленных в заводских условиях, исключает необходимость выполнения высокоточных линейных измерений непосредственно на трубопроводе, возможность выбора между врезными и накладными датчиками позволяет учесть состояние внутренней поверхности трубопровода.

В настоящее время наиболее крупным отечественным производителем ультразвуковых расходомеров является ЗАО “Взлет” (С.-Петербург).

Можно выделить следующие основные методы ультразвуковых измерений: временной метод; корреляционный метод; частотный, фазовый и доплеровский методы.

Временной метод измерения основан на излучении в акустический канал расходомера, расположенный под углом к вектору скорости потока жидкости, ультразвуковых сигналов по направлению потока и против него. Измеренная разность времен прохождения сигналов определяется скоростью потока жидкости. Данный метод измерения получил наибольшее распространение.

Частотный метод заключается в измерении разности частот повторения коротких ультразвуковых импульсов или “пакетов” ультразвуковых колебаний, направляемых одновременно по потоку и против него. Измеренная разностная частота пропорциональна скорости потока.

Доплеровский метод измерений основан на эффекте Доплера и является разновидностью частотного метода.

Преимуществами рассмотренных ультразвуковых методов измерений являются: возможность обеспечения высокого быстродействия расходомеров, позволяющего измерять с высокой точностью пульсирующие расходы с частотой пульсаций до 104 Гц.

Недостатки - высокая зависимость качества измерений от физико-химических свойств жидкости (ее температуры, давления, концентрации и т.п.), от профиля распределения скоростей потока жидкости и от точности монтажа первичных преобразователей.

Корреляционный метод измерения основан на измерении времени перемещения неоднородностей потока между двумя заданными сечениями трубопровода. Неоднородности потока модулируют ультразвуковые сигналы, распространяющиеся в плоскости упомянутых сечений. Ввиду малости расстояния, которое проходит поток жидкости между этими сечениями, сигналы в них модулируются приблизительно одинаково одними и теми же неоднородностями. Для определения скорости потока измеряется время между появлением сигналов с максимальным коэффициентом корреляции в заданных сечениях трубопровода.

Для корреляционного метода измерения характерны большой динамический диапазон, слабая зависимость точности измерений от физико-химических свойств жидкости, качества трубопровода и от точности монтажа первичных преобразователей.

Частота ультразвуковых колебаний обычно выбирается близкой к 1 МГц.

Ультразвуковые расходомеры для трубопроводов небольших диаметров, как правило, изготавливаются с измерительными участками, на которых установлены врезные ППР.

Поверка ультразвуковых расходомеров может выполняться имитационным или проливным методами.

Для измерения расхода в трубопроводах большого диаметра (обычных для источников тепловой энергии) следует отдавать предпочтение многолучевым и многоканальным расходомерам, в которых предусмотрена компенсация температурного влияния на скорость ультразвука, возможность применения как накладных, так и врезных датчиков; которые укомплектованы готовыми измерительными участками, имеют максимальное допустимое расстояние между ППР и вычислительным блоком расходомера, работоспособны при температуре теплоносителя до 180оС; ППР хорошо защищены от действия окружающей среды.

На источниках тепловой энергии распространена ситуация, когда имеется большое число точек измерения расхода (подающие, обратные магистрали, подпиточные трубопроводы, технологические трубопроводы и т.д.). Поэтому совершенно необходимо, чтобы расходомеры имели аппаратные и программные средства организации информационной сети. Очевидно, что объединение расходомеров в сеть и их интеграция в существующую автоматизированную систему управления существенно упрощаются, если применяются приборы одного производителя.

 

 

Электромагнитные расходомеры.

 

Принцип действия электромагнитных расходомеров основан на измерении ЭДС, индуцированной в электропроводной жидкости, которая движется, пересекая силовые линии постоянного или переменного магнитного поля (эффект Фарадея).

Электромагнитные расходомеры обеспечивают высокую точность измерений (часто применяются в качестве образцовых приборов), практически нечувствительны к загрязнению и физико-химическим свойствам жидкости (единственное ограничение для современных приборов – жидкость должна быть электропроводной с удельной проводимостью не менее 10-5 См/м), имеют широкий динамический диапазон (до 200) и способны измерять очень малые расходы, создают минимальное гидравлическое сопротивление потоку, нечувствительны к осесимметричным изменениям профиля распределения скоростей потока, имеют высокое быстродействие, не требуют длинных прямых участков до и после места установки прибора.

Электромагнитные расходомеры, в основном, применяются на трубопроводах небольшого диаметра (до Ду300).

 

 

Вихревые расходомеры.

 

Вихревой метод измерения расхода основан на измерении частоты отрыва вихрей (вихревая “дорожка Кармана”), возникающих при обтекании потоком жидкости погруженного в нее тело обтекания. Частота вихрей пропорциональна средней скорости потока, а амплитуда колебаний давления – пропорциональна квадрату средней скорости (скоростному напору). Измерение частоты может выполняться при помощи ультразвуковых или электромагнитных датчиков, датчиков давления. Вихревой метод применяется также для измерения расхода пара и газовых сред.

Для вихревых расходомеров характерны следующие положительные особенности: они малочувствительны к физико-химическим свойствам жидкости, одинаково удобны для выполнения измерений на трубопроводах малых и больших диаметров, обеспечивают хорошую точность измерений и быстродействие.

Для трубопроводов малых диаметров вихревые расходомеры обычно конструктивно выполняются вместе с измерительным участком. Для трубопроводов большого диаметра применяются расходомеры погружного типа (тело обтекания размещается по оси потока на специальной штанге).

Однако данные расходомеры не получили широкого распространения. По-видимому, это объясняется присущими им недостатками. В частности, тело обтекания создает дополнительное гидравлическое сопротивление потоку, легко загрязняется и поэтому перед расходомером необходимо устанавливать фильтр (который также увеличивает гидравлическое сопротивление). Характеристики расходомера недостаточно стабильны, динамический диапазон недостаточно широк (соизмерим с динамическим диапазоном ультразвуковых расходомеров и в несколько раз меньше динамического диапазона электромагнитных расходомеров), требуемые прямые участки довольно велики – (10..20)Ду.

Тахометрические расходомеры основаны на измерении частоты вращения аксиальной или тангенциальной лопастной турбинки. Поток, воздействуя на наклонные лопасти турбинки, сообщает ей вращательное движение с угловой скоростью, пропорциональной расходу.

Такие расходомеры обеспечивают высокие точность измерений и чувствительность, малоинерционны, слабочувствительны к физико-химическим свойствам жидкости, не требуют длинных прямых участков. До недавнего времени их неоспоримым и решающим достоинством была относительно невысокая цена.

Вместе с тем, турбинные расходомеры быстро загрязняются и выходят из строя, имеют трущиеся механические части, узкий динамический диапазон, создают значительное гидравлическое сопротивление, которое увеличивается из-за обязательной установки фильтра. В связи с уменьшением цен на электромагнитные приборы, ценовая привлекательность турбинных расходомеров перестала быть решающей.

 

 

Анализ характеристик теплосчетчиков

 

Исходя из целей и задач, решаемых теплосчетчиками, они должны обладать следующими свойствами: “легитимностью”; системностью; надежностью; технологичностью; простотой и экономичностью эксплуатации.

Под “легитимностью” будем понимать соответствие свойств теплосчетчиков требованиям существующей нормативно - технической документации.

Основными документами, в которых сформулированы требования к теплосчетчикам, являются:

Рекомендация OIML R75. Теплосчетчики.

Рекомендация МИ 2164-91. ГСИ. Теплосчетчики. Требования к испытаниям, метрологической аттестации, поверке. Общие положения.

Европейский стандарт EN 1434-97. Теплосчетчики.

Международный документ OIML ID 11. Общие требования к электронным средствам измерения.

Рекомендация OIML PR 3.2. Счетчики воды с электронными блоками.

Рекомендация МИ 2112-97. ГСИ. Водяные системы теплоснабжения. Уравнения измерений тепловой энергии и количества теплоносителя. М., ВНИИМС, 1997.

Рекомендация МИ 2553-99. ГСИ. Тепловая энергия и теплоноситель в системах теплоснабжения. Методика оценивания погрешностей измерений. Основные положения.

Рекомендация МИ 2537-99. ГСИ. Тепловая энергия в открытых системах теплоснабжения, полученная потребителем. Методика выполнения измерений.

Правила учета тепловой энергии и теплоносителя / Главгосэнергонадзор - М.: Изд-во МЭИ, 1995 – 68 с.

Основными требованиями, предъявляемыми к теплосчетчикам, являются:

- теплосчетчики должны иметь сертификат Госстандарта РФ об утверждении типа средства измерения, быть зарегистрированы в Государственном реестре средств измерений и иметь заключение Главгосэнергонадзора;

- теплосчетчики должны обеспечивать измерение тепловой энергии с относительной погрешностью не более 5% при разности температур в подающем и обратном трубопроводах от 10 до 200С, и не более 4% при разности температур более 200С;

- приборы, измеряющие массу (объем) теплоносителя (в составе теплосчетчика), должны иметь относительную погрешность не более 2% в диапазоне расхода воды от 4 до 100%;

- измерение температуры теплоносителя должно выполняться с абсолютной погрешностью t  ± (0,6+0,004t), где t – температура теплоносителя;

- приборы, регистрирующие давление теплоносителя, должны обеспечивать его измерение с относительной погрешностью не более 2%.

Под системностью будем понимать возможность при помощи одного типа приборов обеспечить учет как на источниках тепла, так и у потребителей и возможность интеграции в автоматизированные системы сбора, накопления, обработки и отображения информации, а также управления потреблением тепла.

Учет тепловой энергии у потребителей и на источниках тепла, организованный с использованием приборов одного типа позволит уменьшить или исключить методические погрешности метода измерения и аппаратурные погрешности используемых приборов.

Источники тепла подают в тепловые сети теплоноситель по трубопроводам, как правило, диаметром 400-1200 мм. Потребители получают теплоноситель, как правило, по трубопроводам диаметром от 50 до 400 мм.

Возможность интеграции теплосчетчика в автоматизированные системы определяется, с одной стороны, технической возможностью считывания информации из оперативно-запоминающего устройства (ОЗУ) теплосчетчика в ЭВМ и, с другой стороны, наличием специального сертифицированного программного обеспечения, позволяющего реализовать подобный обмен информацией. Часто очень полезным может оказаться наличие у теплосчетчика дополнительных унифицированных выходов, дублирующих, например, каналы измерения расходов. В этом случае оказывается возможной простая интеграция теплосчетчика в существующую автоматизированную систему, построенную на базе какого-либо контроллера.

Надежность, как свойство теплосчетчика, проявляется в процессе его эксплуатации и определяется надежностью входящих в его состав элементов. Основным элементом, надежность которого фактически определяет надежность теплосчетчика в целом, является расходомер. Свойства расходомеров, используемых для измерения расхода теплоносителя, подробно проанализированы выше. Отметим только, что надежность работы теплосчетчика во многом зависит от качества монтажа и соблюдения правил эксплуатации теплосчетчика.

Известный нам опыт, позволяет оценить как “высокую” надежность теплосчетчиков фирмы “Взлет”, Технологичность монтажа теплосчетчика определяется свободой выбора метода и конкретного места его монтажа, а также затратами на монтаж.

Свобода выбора места монтажа теплосчетчика определяется ограничениями, накладываемыми на длину “прямых” участков трубопровода до первичных преобразователей и после них, а также допускаемыми длинами линий связи между датчиками и ТВ.

Затраты на эксплуатацию теплосчетчиков определяются периодичностью и содержанием работ по их обслуживанию и периодической поверке. Наибольшая продолжительность межповерочного периода для современных теплосчетчиков составляет 3-5 лет.